35 research outputs found

    Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark

    Full text link
    Perhaps surprisingly sewerage infrastructure is one of the most costly infrastructures in modern society. Sewer pipes are manually inspected to determine whether the pipes are defective. However, this process is limited by the number of qualified inspectors and the time it takes to inspect a pipe. Automatization of this process is therefore of high interest. So far, the success of computer vision approaches for sewer defect classification has been limited when compared to the success in other fields mainly due to the lack of public datasets. To this end, in this work we present a large novel and publicly available multi-label classification dataset for image-based sewer defect classification called Sewer-ML. The Sewer-ML dataset consists of 1.3 million images annotated by professional sewer inspectors from three different utility companies across nine years. Together with the dataset, we also present a benchmark algorithm and a novel metric for assessing performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art algorithms, six from the sewer defect classification domain and six from the multi-label classification domain, and combining the best performing algorithms. The novel metric is a class-importance weighted F2 score, F2CIW\text{F}2_{\text{CIW}}, reflecting the economic impact of each class, used together with the normal pipe F1 score, F1Normal\text{F}1_{\text{Normal}}. The benchmark algorithm achieves an F2CIW\text{F}2_{\text{CIW}} score of 55.11% and F1Normal\text{F}1_{\text{Normal}} score of 90.94%, leaving ample room for improvement on the Sewer-ML dataset. The code, models, and dataset are available at the project page https://vap.aau.dk/sewer-ml/Comment: CVPR 2021. Project webpage: https://vap.aau.dk/sewer-ml

    Is it Raining Outside? Detection of Rainfall using General-Purpose Surveillance Cameras

    Get PDF
    In integrated surveillance systems based on visual cameras, the mitigation of adverse weather conditions is an active research topic. Within this field, rain removal algorithms have been developed that artificially remove rain streaks from images or video. In order to deploy such rain removal algorithms in a surveillance setting, one must detect if rain is present in the scene. In this paper, we design a system for the detection of rainfall by the use of surveillance cameras. We reimplement the former state-of-the-art method for rain detection and compare it against a modern CNN-based method by utilizing 3D convolutions. The two methods are evaluated on our new AAU Visual Rain Dataset (VIRADA) that consists of 215 hours of general-purpose surveillance video from two traffic crossings. The results show that the proposed 3D CNN outperforms the previous state-of-the-art method by a large margin on all metrics, for both of the traffic crossings. Finally, it is shown that the choice of region-of-interest has a large influence on performance when trying to generalize the investigated methods. The AAU VIRADA dataset and our implementation of the two rain detection algorithms are publicly available at https://bitbucket.org/aauvap/aau-virada.Comment: 10 pages, 7 figures, CVPR2019 V4AS worksho

    Re-Identification of Giant Sunfish using Keypoint Matching

    Get PDF

    Detection of Marine Animals in a New Underwater Dataset with Varying Visibility

    Get PDF

    Re-Identification of Zebrafish using Metric Learning

    Get PDF

    Zero-shot Clustering of Embeddings with Self-Supervised Learnt Encoders

    Get PDF
    We explore whether self-supervised pretrained models can provide a useful representation space for datasets they were not trained on, and whether these representations can be used to group novel unlabelled data into meaningful clusters. To this end, we conduct experiments using image representation encoders pretrained on ImageNet using a variety of self-supervised training techniques. These encoders are deployed on image datasets that were not seen during training, without fine-tuning, and we investigate whether their embeddings can be clustered with conventional clustering algorithms. We find that it is possible to create well-defined clusters using self-supervised feature encoders, especially when using the Agglomerative Clustering method, and that it is possible to do so even for very fine-grained datasets such as NABirds. We also find indications that the Silhouette score is a good proxy of cluster quality when no ground-truth is available

    A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect Dataset

    Full text link
    In an effort to catalog insect biodiversity, we propose a new large dataset of hand-labelled insect images, the BIOSCAN-Insect Dataset. Each record is taxonomically classified by an expert, and also has associated genetic information including raw nucleotide barcode sequences and assigned barcode index numbers, which are genetically-based proxies for species classification. This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment, however, the dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community. Driven by the biological nature inherent to the dataset, a characteristic long-tailed class-imbalance distribution is exhibited. Furthermore, taxonomic labelling is a hierarchical classification scheme, presenting a highly fine-grained classification problem at lower levels. Beyond spurring interest in biodiversity research within the machine learning community, progress on creating an image-based taxonomic classifier will also further the ultimate goal of all BIOSCAN research: to lay the foundation for a comprehensive survey of global biodiversity. This paper introduces the dataset and explores the classification task through the implementation and analysis of a baseline classifier
    corecore